University of California, San Francisco Logo

University of California, San Francisco | About UCSF | Search UCSF | UCSF Medical Center

Home > Treatment > Pediatric OI Guidelines > Candida Infections
Cryptococcosis
gray line
transparent gif
transparent gif
Epidemiology

Most cases of cryptococcosis in HIV-infected patients are caused by Cryptococcus neoformans; C. gatti (formerly C. neoformans variety gatti) infection occurs primarily in tropical and subtropical areas. Cryptococcal infections occur much less frequently among HIV-infected children than among adults (339Leggiadro RJ, Kline MW, Hughes WT. Extrapulmonary cryptococcosis in children with acquired immunodeficiency syndrome. Pediatr Infect Dis J 1991;10:658-62., 340Gonzalez CE, Shetty D, Lewis LL, et al. Cryptococcosis in human immunodeficiency virus-infected children. Pediatr Infect Dis J 1996;15:796-800., 341Abadi J, Nachman S KA, Pirofski L. Cryptococcosis in children with AIDS. Clin Infect Dis 1999;28:309-13.). During the pre-HAART era, most cases of cryptococcosis in HIV-infected children (overall incidence, 1%) occurred in those aged 6-12 years and in those with CD4 counts indicating severe immunosuppression (341Abadi J, Nachman S KA, Pirofski L. Cryptococcosis in children with AIDS. Clin Infect Dis 1999;28:309-13.). Access to HAART has dramatically decreased the overall incidence of cryptococcal infection (342Mirza S, Phelan M, Rimland D, et al. The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992-2000. Clin Infect Dis 2003;36:789-94., 343), and cryptococcosis in HIV-infected children on HAART remains exceedingly uncommon. Data from various PACTG studies during the pre-HAART and post-HAART eras indicate that the rate of invasive fungal infection, including cryptococcosis, has remained <0.1 per 100 child-years (1Dankner WM, Lindsey JC, Levin MJ, et al. Correlates of opportunistic infections in children infected with the human immunodeficiency virus managed before highly active antiretroviral therapy. Pediatr Infect Dis J 2001;20:40-8., 3Gona P, Van Dyke RB, Williams PL, et al. Incidence of opportunistic and other infections in HIV-infected children in the HAART era. JAMA 2006;296:292-300.). In the Perinatal AIDS Collaborative Transmission Study, no cases of cryptococcosis were identified during the HAART era (4Nesheim SR, Kapogiannis BG, Soe MM, et al. Trends in opportunistic infections in the pre- and post-highly active antiretroviral therapy eras among HIV-infected children in the Perinatal AIDS Collaborative Transmission Study, 1986-2004. Pediatrics 2007;120:00 100–9.).

Clinical Manifestations

Cryptococcosis often presents with subtle and nonspecific findings such as fever and headache. Early diagnosis requires consideration of this infection in a symptomatic patient whose CD4 counts indicate severe immunosuppression. In both HIV-infected adults and children, meningoencephalitis is the most common initial manifestation of cryptococcosis. The disease typically evolves over days to weeks with fever and headache. Less frequent findings include nuchal rigidity, photophobia, and focal neurologic signs, as were seen among 30 HIV-infected children with cryptococcosis reported from the United States (341Abadi J, Nachman S KA, Pirofski L. Cryptococcosis in children with AIDS. Clin Infect Dis 1999;28:309-13.). In contrast to this indolent presentation, children in Zimbabwe presented with an acute form of neurologic cryptococcosis (69% with nuchal rigidity, 38% with seizure activity, and 23% with focal neurologic signs) (344Gumbo T, Kadzirange G, Mielke J, et al. Cryptococcus neoformans meningoencephalitis in African children with acquired immunodeficiency syndrome. Pediatr Infect Dis J 2002;21:54-6.). CNS mass lesions (cryptococcomas) have not been reported among HIV-infected children.

Disseminated cryptococcosis can be associated with cutaneous lesions, including small, translucent umbilicated papules (indistinguishable from molluscum contagiosum), nodules, ulcers, and infiltrated plaques resembling cellulitis. Diagnosis of pulmonary cryptococcosis without dissemination is unusual among children. Presenting findings include unexplained recurrent fever, cough with scant sputum, intrathoracic lymphadenopathy, and focal or diffuse pulmonary infiltrates. Alternatively the infection may be asymptomatic, with pulmonary nodules revealed on routine chest radiograph (340Gonzalez CE, Shetty D, Lewis LL, et al. Cryptococcosis in human immunodeficiency virus-infected children. Pediatr Infect Dis J 1996;15:796-800.).

Diagnosis

Detection of cryptococcal antigen in serum, CSF or other body fluids is highly effective for rapid and accurate diagnosis of cryptococcal infection.

Microscopic examination of CSF on India ink-stained wet mounts should be performed to diagnose suspected CNS disease. CSF cell count, glucose, and protein can be virtually normal with CNS cryptococcosis, but the opening pressure usually is elevated. Cryptococcal antigen can be detected in CSF or serum by latex agglutination test (several manufacturers) from >90% of patients with cryptococcal meningitis. However, CSF antigen detection may be negative in culture-positive cryptococcal meningitis; high titers of antigen (prozone effect), low levels of antigen, and nonencapsulated strains contribute to this contradictory result (345Chuck SL, Sande MA. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med 1989;321: 794-9., 346Currie BP, Freundlich LF, Soto MA, et al. False-negative cerebrospinal fluid cryptococcal latex agglutination tests for patients with culture-positive cryptococcal meningitis. J Clin Microbiol 1993;31:2519-22.).

Fungal cultures from CSF, sputum, and blood can identify the organism; the lysis-centrifugation method is the most sensitive for blood specimens. In some cases (e.g., refractory or relapsed disease), susceptibility testing of the C. neoformans isolate can be beneficial. Overall in vitro resistance to antifungal agents remains uncommon (347Pfaller MA, Messer SA, Boyken L, et al. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol 2005;43:2163-7.).

Diffuse pulmonary disease can be diagnosed through bronchoalveolar lavage and direct examination of India ink-stained specimens, culture, and antigen detection. Focal pulmonary and skin lesions may require biopsy with culture and staining.

Prevention Recommendations
Preventing Exposure

No strategies have been proven to prevent exposure. C. neoformans infection is believed to be acquired through inhalation of aerosolized particles from the environment. Serologic studies of immunocompetent children in an urban setting indicate that most children are infected by C. neoformans after the second year of life (348Goldman DL, Khine H, Abadi J, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 2001;107:E66.).

Preventing the First Episode of Disease

Because the incidence of cryptococcal disease is so low in HIV-infected children (4Nesheim SR, Kapogiannis BG, Soe MM, et al. Trends in opportunistic infections in the pre- and post-highly active antiretroviral therapy eras among HIV-infected children in the Perinatal AIDS Collaborative Transmission Study, 1986-2004. Pediatrics 2007;120:00 100–9., 339Leggiadro RJ, Kline MW, Hughes WT. Extrapulmonary cryptococcosis in children with acquired immunodeficiency syndrome. Pediatr Infect Dis J 1991;10:658-62., 340Gonzalez CE, Shetty D, Lewis LL, et al. Cryptococcosis in human immunodeficiency virus-infected children. Pediatr Infect Dis J 1996;15:796-800., 341Abadi J, Nachman S KA, Pirofski L. Cryptococcosis in children with AIDS. Clin Infect Dis 1999;28:309-13.), routine testing of asymptomatic children for serum cryptococcal antigen is not recommended (DIII). Additionally, given the low incidence of cryptococcosis in HIV-infected children, lack of survival benefits in primary prevention studies of adults (349Chang LW, Phipps WT, Kennedy GE, et al. Antifungal interventions for the primary prevention of cryptococcal disease in adults with HIV. Cochrane Database Syst Rev 2005;Jul 20:CD004773.), possibility of drug interaction, potential resistance to antifungal drugs, and cost, routine use of antifungal medications is not recommended for primary prophylaxis of cryptococcal infections in children (DIII).

A review of randomized controlled trials using antifungal interventions for the primary prevention of cryptococcal diseases indicates that fluconazole and itraconazole can reduce cryptococcal disease among adults who have advanced HIV disease and severe immunosuppression (CD4 count <50 cells/mm3) (349Chang LW, Phipps WT, Kennedy GE, et al. Antifungal interventions for the primary prevention of cryptococcal disease in adults with HIV. Cochrane Database Syst Rev 2005;Jul 20:CD004773.). However, neither of these interventions clearly affected mortality.

Discontinuing Primary Prophylaxis

Not applicable.

Treatment Recommendations
Treatment of Disease

Given the low incidence of cryptococcosis in HIV-infected children even during the pre-HAART era, management of this disease in these patients has not been prospectively studied. Treatment recommendations reflect information extrapolated from many well-designed studies involving HIV-infected adults with cryptococcal meningitis.

Unlike immunocompentent hosts, in whom recovery from pulmonary infection without antifungal treatment can occur, immunocompromised hosts with cryptococcosis require treatment because the condition is often fatal in the absence of treatment. Although antifungal treatment is effective, immune reconstitution of the host with the use of antiretroviral medications is crucial to the long-term outcome in terms of avoiding episodes of recurrence and relapse. However, IRIS can be problematic in the short term, posing a diagnostic dilemma when it presents as clinical worsening in a host that was (or is being) treated appropriately for cryptococcal infection. Although data are limited on how best to prevent and manage IRIS, because of the close proximity of OI diagnosis and HAART initiation in patients who developed IRIS (350Shelburne SA, Darcourt J, White AC, et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 2005;40:1049-52., 351Shelburne SA, Visnegarwala F, Darcourt J, et al. Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS 2005;194.), some clinicians consider delaying HAART in treatment-naïve patients who have treatable OIs until after the acute phase of initial OI therapy has been completed (CIII). Factors other than IRIS, such as tolerability of OI treatments and HAART and overlapping toxicities if both are started concurrently, are also reasons to delay HAART (CIII). No clinical trials have assessed optimal timing of HAART initiation in patients with concurrent cryptococcosis. Overall in vitro resistance to antifungal agents used to treat cryptococcosis remains uncommon (347Pfaller MA, Messer SA, Boyken L, et al. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol 2005;43:2163-7.). Newer azoles (e.g., voriconazole, posaconazole, ravuconazole) are all active in vitro against C. neoformans (347Pfaller MA, Messer SA, Boyken L, et al. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol 2005;43:2163-7.), but published clinical experience in using them for cryptococcosis is limited (352Perfect JR, Marr KA, Walsh TJ, et al. Voriconazole treatment for lesscommon, emerging, or refractory fungal infections. Clin Infect Dis 2003;36:1122-31. Vol. 58 / RR-11 Recommendations and Reports 109, 353Pitisuttithum P, Negroni R, Graybill JR, et al. Activity of posaconazole in the treatment of central nervous system fungal infections. J Antimicrob Chemother 2005;56:745-55.).

CNS disease

The most common and well-studied presentation of cryptococcal infection in HIV-infected patients is CNS disease. In light of studies in adults (354Bennett JE, Dismukes WE, Duma RJ, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med 1979;301:126-31., 355van der Horst CM, Saag MS, Cloud GA, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med 1997;337:15-21., 356Saag MS, Graybill RJ, Larsen RA, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 2000;30:710-8.), combination therapy with amphotericin B and flucytosine for 2 weeks (induction therapy) followed by fluconazole for a minimum of 8 weeks (consolidation therapy) is recommended for children (AI). Cryptococci were cleared from CSF significantly more rapidly from adults with CNS disease who received initial therapy with amphotericin B (0.7 mg/kg/day) and flucytosine (100 mg/kg/day) than it was in those who received amphotericin B alone, amphotericin B plus fluconazole, or triple-antifungal therapy (357Brouwer AE, Rajanuwong A, Chierakul W, et al. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet 2004;363:1764-7., 358Dromer F, Mathoulin-Pélissier S, Launay O, et al. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLOS Med 2007;4:e21.). In one study of adults, liposomal amphotericin B (AmBisomeŽ) dosed at 4 mg/kg/day resulted in significantly earlier CSF culture conversion than did amphotericin B at 0.7 mg/kg/day (359Leenders AC, Reiss P, Portegies P, et al. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 1997;11:1463-71.). Although the cost of specific amphotericin B formulations is an important factor in selection of a specific preparation, the indication for use of the drug is also important. For example, the liposomal preparation is preferred for patients with renal insufficiency (AII). Monitoring for and managing raised intracranial pressure is crucial to the optimal management of CNS cryptococcosis (see below).

In patients who cannot tolerate flucytosine, amphotericin B (or its liposomal preparation) alone can be used for initial therapy (BI). Fluconazole plus flucytosine is superior to fluconazole alone (360Larsen RA, Bozzette SA, Jones BE, et al. Fluconazole combined with flucytosine for treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis 1994;19:741-5., 361Mayanja-Kizza H, Oishi K, Mitarai S, et al. Combination therapy with fluconazole and flucytosine for cryptococcal meningitis in Ugandan patients with AIDS. Clin Infect Dis 1998;26:1362-6.) and provides an alternative to amphotericin B for acute therapy of invasive disease (BII); however, few data are available regarding use of this combination in children, and it should be used only if amphotericin B-based therapy is not tolerated (BIII). Although fluconazole monotherapy was an effective alternative to amphotericin B in adults with AIDS-associated cryptococcal meningitis (362Saag MS, Powderly WG, Cloud GA, et al. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N Engl J Med 1992;326:83-9.), concerns in this study about differences in early death, delayed CSF sterilization, and drug resistance (363Bicanic T, Harrison T, Niepieklo A, et al. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 2006;43:1069-73., 364Bicanic T, Meintjes G, Wood R, et al. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clin Infect Dis 2007;45:76-80.) make fluconazole monotherapy less favorable for initial therapy of CNS disease. Because of rapidly developing resistance, flucytosine alone should never be used to treat cryptococcosis (EII).

After a minimum of 2 weeks of induction therapy with evidence of clinical improvement and a negative CSF culture after repeat lumbar puncture, amphotericin B and flucytosine can be discontinued and consolidation therapy initiated with fluconazole (AI). Consolidation therapy is continued for a minimum of 8 weeks (365Saag MS, Cloud GA, Graybill JR, et al. A comparison of itraconazole versus fluconazole as maintenance therapy for AIDS-associated cryptococcal meningitis. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Clin Infect Dis 1999;28:291-6.). Itraconazole is an alternative to fluconazole for the consolidation phase of CNS therapy and for secondary prophylaxis (BI). Fluconazole is preferred because studies comparing the two agents demonstrate higher rates of CSF sterilization during consolidation therapy (355van der Horst CM, Saag MS, Cloud GA, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med 1997;337:15-21.) and less frequent relapse (365Saag MS, Cloud GA, Graybill JR, et al. A comparison of itraconazole versus fluconazole as maintenance therapy for AIDS-associated cryptococcal meningitis. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Clin Infect Dis 1999;28:291-6.) during maintenance therapy in fluconazole recipients.

Pulmonary and extrapulmonary cryptococcosis (CNS disease ruled out)

No controlled clinical studies describe the outcome of non- CNS cryptococcosis in HIV-infected patients. CNS disease should be ruled out in all patients, after which the choice of antifungal medication and length of initial therapy can be decided in light of the clinical severity of illness. Patients with severe pulmonary disease or disseminated cryptococcosis should be treated with amphotericin B with or without the addition of flucytosine, as for CNS disease (AIII). Usually combination therapy should be provided until symptoms resolve. Those with mild-to-moderate pulmonary illness or other localized disease can be managed with fluconazole monotherapy (AIII). Regardless of the antifungal agent selected for initial therapy, secondary prophylaxis with fluconazole or itraconazole should be continued (AIII) until a decision about when to stop prophylaxis can be determined on a case-by-case basis (see note below on discontinuing secondary prophylaxis).

Monitoring and Adverse Events, Including IRIS
Monitoring for raised intracranial pressure
Whenever a lumbar puncture is performed, opening pressure should be measured (AII). Studies in adults clearly show the role of increased intracranial pressure in death associated with CNS cryptococcosis (355van der Horst CM, Saag MS, Cloud GA, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med 1997;337:15-21., 366Graybill JR, Sobel J, Saag M, et al. Diagnosis and management of increased intracranial pressure in patients with AIDS and cryptococcal meningitis. The NIAID Mycoses Study Group and AIDS Cooperative Treatment Groups. Clin Infect Dis 2000;30:47-54.). Health-care providers should be vigilant about this condition. Its management includes repeated lumbar punctures. In rare cases, CSF shunting may need to be considered for patients who do not tolerate daily lumbar punctures or if standard management does not relieve signs and symptoms of cerebral edema. Corticosteroids and acetazolamide should not be used to reduce intracranial pressure in cryptococcal meningitis (DIII); acetazolamide was associated with severe acidosis, hypokalemia, and other adverse effects in a clinical trial among adults (367Newton PN, Thai le H, Tip NQ, et al. A randomized, double-blind, placebo-controlled trial of acetazolamide for the treatment of elevated intracranial pressure in cryptococcal meningitis. Clin Infect Dis 2002;35:769-72.).
Monitoring for treatment response

In addition to monitoring clinical response, mycologic response in patients with CNS cryptococcosis typically is assessed by a repeat lumbar puncture and CSF examination at 2 weeks of treatment, with continuation of induction therapy if the culture is positive until negative cultures are obtained. Monitoring serial serum cryptococcal antigen titers is not useful for following treatment efficacy because changes in serum cryptococcal antigen titers do not correlate well with outcome during treatment for acute meningitis or during suppressive therapy (368Powderly WG, Cloud GA, Dismukes WE, et al. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: value in the management of AIDS-associated cryptococcal meningitis. Clin Infect Dis 1994;18:789-92., 369Aberg JA, Watson J, Segal M, et al. Clinical utility of monitoring serum cryptococcal antigen (sCRAG) titers in patients with AIDS-related cryptococcal disease. HIV Clin Trials 2000;1:1-6.). Serial measurement of CSF cryptococcal antigen is more useful; in one study, an unchanged or increased titer of antigen in CSF correlated with clinical and microbiologic failure to respond to treatment, and a rise in CSF antigen titer during suppressive therapy was associated with relapse of cryptococcal meningitis (368Powderly WG, Cloud GA, Dismukes WE, et al. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: value in the management of AIDS-associated cryptococcal meningitis. Clin Infect Dis 1994;18:789-92.). However, monitoring of CSF cryptococcal antigen levels requires repeated lumbar punctures and is not routinely recommended for monitoring response (CIII).

Monitoring for adverse events

Adverse effects of amphotericin B (Table 5) are primarily nephrotoxicity; permanent nephrotoxicity is related to cumulative dose. Infusion-related fevers, chills, nausea, and vomiting can occur, but they are less frequent in children than in adults. Close monitoring for drug toxicities is needed especially when amphotericin B is used with flucytosine.

Flucytosine has the potential for marked toxicity, especially affecting the bone marrow (e.g., anemia, leukopenia, and thrombocytopenia), liver, GI tract, kidney, and skin. In patients receiving flucytosine, flucytosine blood levels should be monitored to prevent bone marrow suppression and GI toxicity; peak serum levels, which occur 2 hours after an oral dose, should not exceed 75 µg/mL. Flucytosine should be avoided in children with severe renal impairment (EIII).

Fluconazole and the other azoles have relatively low rates of toxicity, but their potential drug interactions can limit their use. Because of their ability to inhibit the CYP450- dependent hepatic enzymes, the potential for drug interactions, particularly with antiretroviral drugs, should be carefully evaluated before initiation of therapy (AIII).

IRIS

Patients who develop IRIS related to cryptococcosis are more likely than those who do not develop cyrptococcal IRIS to be severely immunocompromised with disseminated infection and to have initiated potent antiretroviral therapy soon after diagnosis of cryptococcal disease (370Lortholary O, Fontanet A, Mémain N, et al. Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIVassociated cryptococcosis in France. AIDS 2005;19:1043-9.); in antiretroviral-naïve patients newly diagnosed with cryptococcal meningitis, delay in potent antiretroviral therapy may be prudent until the end of the first 2 weeks of induction therapy (CIII).

IRIS related to cryptococcosis can present within weeks (e.g., meningitis) or months (e.g., lymphadenitis) after start of HAART. Symptoms of meningitis are similar to those described for meningitis presenting as the initial manifestation of cryptococcosis. In one study, about 30% of all HIV-infected adults hospitalized for infection with C. neoformans who received HAART were readmitted with symptoms attributed to an inflammatory response (350Shelburne SA, Darcourt J, White AC, et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 2005;40:1049-52.). Of the 18 patients with C. neoformans-related IRIS in the cited study, 17 had culture-negative meningitis, and most cases occurred during the first 30 days after initiation of HAART. The most common presentation of late cryptococcal IRIS is lymphadenitis, particularly mediastinal lymphadenitis (371Skiest DJ, Hester LJ, Hardy RD. Cryptococcal immune reconstitution inflammatory syndrome: report of four cases in three patients and review of the literature. J Infect 2005;51:e289-97.).

The optimal management of cryptococcal IRIS has not been defined. Antifungal therapy should be initiated in patients not already receiving it, and antiretroviral therapy should be continued (AII). Although many cases resolve spontaneously, some experts also have used anti-inflammatory therapy (e.g., short-course corticosteroids) in patients with severely symptomatic IRIS (BIII) (371Skiest DJ, Hester LJ, Hardy RD. Cryptococcal immune reconstitution inflammatory syndrome: report of four cases in three patients and review of the literature. J Infect 2005;51:e289-97., 372Lesho E. Evidence base for using corticosteroids to treat HIV-associated immune reconstitution syndrome. Expert Rev Anti Infect Ther 2006;4: 469-78.).

Management of Treatment Failure

Treatment failure is defined as clinical deterioration despite appropriate therapy, including management of intracranial pressure; lack of improvement in signs and symptoms after 2 weeks of appropriate therapy; or relapse after an initial clinical response. Differentiating IRIS from treatment failure is important because treatment approaches and outcomes differ. Optimal management of patients with treatment failure is not known. If cultures are positive at treatment failure, evaluation of antifungal susceptibilities might be considered, although fluconazole resistance with C. neoformans is rare in the United States (but more common in some international settings) (363Bicanic T, Harrison T, Niepieklo A, et al. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 2006;43:1069-73.). Patients in whom initial azole-based therapy fails should be switched to amphotericin B-based therapy (363Bicanic T, Harrison T, Niepieklo A, et al. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 2006;43:1069-73.), ideally in combination with flucytosine (BIII); the possibility of drug interactions resulting in subtherapeutic azole levels (e.g., concurrent rifampin use or other drugs metabolized by the liver) should be explored (363Bicanic T, Harrison T, Niepieklo A, et al. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 2006;43:1069-73.). Use of liposomal amphotericin B should be considered, as one study suggests improved efficacy in CSF sterilization with liposomal preparations than with standard amphotericin B (AII) (359Leenders AC, Reiss P, Portegies P, et al. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 1997;11:1463-71.). Some data from HIV-infected adults indicate higher dosages (e.g., 400-800 mg/ day) of fluconazole in combination with flucytosine also can be considered for salvage therapy (BII) (356Saag MS, Graybill RJ, Larsen RA, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 2000;30:710-8., 373Lortholary O. Management of cryptococcal meningitis in AIDS: the need for specific studies in developing countries. Clin Infect Dis 2007;45:81-3.). Clinical experience with new antifungal agents in managing cryptococcosis is limited. A few patients with cryptococcal infections refractory or intolerant to standard antifungal therapy have been treated with posaconazole or voriconazole with variable success (352Perfect JR, Marr KA, Walsh TJ, et al. Voriconazole treatment for lesscommon, emerging, or refractory fungal infections. Clin Infect Dis 2003;36:1122-31. Vol. 58 / RR-11 Recommendations and Reports 109, 353Pitisuttithum P, Negroni R, Graybill JR, et al. Activity of posaconazole in the treatment of central nervous system fungal infections. J Antimicrob Chemother 2005;56:745-55.). Echinocandins do not have clinical activity against cryptococcal infections and should not be used.

Prevention of Recurrence

Patients who have completed initial therapy for cryptococcosis should receive suppressive treatment (i.e., secondary prophylaxis or chronic maintenance therapy) (AI). Fluconazole (AI) is superior and preferable to itraconazole (BI) for preventing relapse of cryptococcal disease (365Saag MS, Cloud GA, Graybill JR, et al. A comparison of itraconazole versus fluconazole as maintenance therapy for AIDS-associated cryptococcal meningitis. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Clin Infect Dis 1999;28:291-6., 374Bozzette SA, Larsen RA, Chiu J, et al. A placebo-controlled trial of maintenance therapy with fluconazole after treatment of cryptococcal meningitis in the acquired immunodeficiency syndrome. California Collaborative Treatment Group. N Engl J Med 1991;324:580-4., 375Powderly WG, Saag MS, Cloud GA, et al. A controlled trial of fluconazole or amphotericin B to prevent relapse of cryptococcal meningitis in patients with the acquired immunodeficiency syndrome. The NIAID AIDS Clinical Trials Group and Mycoses Study Group. N Engl J Med 1992;326:793-8.). Suppressive therapy typically is continued long term.

Discontinuing Secondary Prophylaxis

Until recently, lifelong secondary prophylaxis typically was recommended. The safety of discontinuing secondary prophylaxis for cryptococcosis after immune reconstitution with HAART has not been studied in children, and decisions in this regard should be made on a case-by-case basis. Adults at apparent low risk for recurrence of cryptococcosis have successfully completed a course of initial therapy, remain asymptomatic with regard to signs and symptoms of cryptococcosis, and have a sustained (≥6 months) increase in their CD4 counts to ≥200 cells/mm3 after HAART (376Kirk O, Reiss P, Uberti-Foppa C, et al. Safe interruption of maintenance therapy against previous infection with four common HIV-associated opportunistic pathogens during potent antiretroviral therapy. Ann Intern Med 2002;137:239-50., 377Vibhagool A, Sungkanuparph S, Mootsikapun P, et al. Discontinuation of secondary prophylaxis for cryptococcal meningitis in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy: a prospective, multicenter, randomized study. Clin Infect Dis 2003;36:1329-31., 378Mussini C, Pezzotti P, Miro JM, et al. Discontinuation of maintenance therapy for cryptococcal meningitis in patients with AIDS treated with highly active antiretroviral therapy: an international observational study. Clin Infect Dis 2004;38:565-71.). In light of these observations and inference from data regarding discontinuing secondary prophylaxis for other OIs in adults with advanced HIV infection, discontinuing chronic suppressive therapy for cryptococcosis (after being on it for ≥6 months) can be considered for asymptomatic children aged ≥6 years, on HAART, and with sustained (≥6 months) increase in their CD4 counts to ≥200 cells/mm3 (BII). Suppressive therapy should be reinitiated if the CD4 count decreases to <200 cells/mm3 (AIII).

Prophylaxis to prevent recurrence of opportunistic infections, after chemotherapy for acute disease, among HIV-exposed and HIV-infected infants and children, United States*†: Cryptococcus neoformans
Preventive regimen

Excerpted from Table 2

* Information in these guidelines might not represent FDA approval or FDA-approved labeling for products or indications. Specifically, the terms “safe”and “effective” might not be synonymous with the FDA-defined legal standards for product approval. Letters and roman numerals in parentheses after regimens indicate the strength of the recommendations nd the quality of evidence supporting it (see Box).

† Abbreviations: HIV—human immunodeficiency virus; FDA—Food and Drug Administration; PCP—Pneumocystis pneumonia; TMP-SMX—trimethoprim-sulfamethoxazole; HAART—highly active antiretroviral treatment; IV—intravenous; IVIG—intravenous immune globulin.

§§ Pyrimethamine plus sulfadiazine, and possibly atovaquone, confers protection against PCP as well as against toxoplasmosis. Although the clindamycin-plus-pyrimethamine or atovaquone-with/without-pyrimethamine regimens are recommended for adults, they have not been tested in children. However, these drugs are safe and are used for other infections in children.

¶ Substantial drug interactions might occur between rifabutin and protease inhibitors and non-nucleoside reverse transcriptase inhibitors. A specialist should be consulted.

** Antimicrobial prophylaxis should be chosen on the basis of microorganism identification and antibiotic susceptibility testing. TMP-SMX, if used, should be administered daily. Health-care providers should be cautious about using antibiotics solely for this purpose because of the potential for development of drug-resistant microorganisms. IVIG might not provide additional benefit to children receiving daily TMP/SMX but might be considered for children who have recurrent bacterial infections despite TMP-SMX prophylaxis. Choice of antibiotic prophylaxis versus IVIG also should involve consideration of adherence, ease of IV access, and cost. If IVIG is used, respiratory syncytial virus (RSV) IVIG (750 mg/kg body weight), not monoclonal RSV antibody, can be substituted for IVIG during the RSV season to provide broad anti-infective protection, if this product is available.

IndicationFirst choiceAlternative
Recommended as standard of care after completion of initial therapy
Documented disease

Fluconazole, 6 mg/kg body weight(max 200 mg) orally daily (AI)

Itraconazole oral solution, 5 mg/kg body weight (max 200 mg) orally per dose 2 times daily (BI)

Criteria for discontinuing and restarting prophylaxis for opportunistic infections among HIV-exposed and HIV-infected infants and children, United States*: Cryptococcal meningitis
Criteria for discontinuing primary prophylaxisCriteria for restarting primary prophylaxisCriteria for discontinuing secondary prophylaxisCriteria for restarting secondary prophylaxis

Excerpted from Table 3

* Abbreviations: HIV=human immunodeficiency virus; PCP=Pneumocystis pneumonia; HAART: highly active antiretroviral treatment; TE=Toxoplasma encephalitis; MAC=Mycobacterium avium complex.

Not applicable

Not applicable

If all of the following criteria fulfilled (BII):

transparent gifgrey bulletAge ≥6 yrs
transparent gif
transparent gifgrey bulletAsymptomatic and received ≥6 mos of secondary prophylaxis for crypotoccosis
transparent gif
transparent gifgrey bulletCompleted ≥6 mos of HAART
transparent gif
transparent gifgrey bulletCD4 count ≥200 cells/mm3 for ≥6 mon
transparent gif

Age ≥6 yrs: CD4 count <200 cells/mm3 (AIII)

Recommendations for treatment of opportunistic infections in HIV-exposed and HIV-infected infants and children, United States*†: Cryptococcus neoformans
Preferred therapies and durationAlternative therapiesOther options or issues

Excerpted from Table 4

* HIV=human immunodeficiency virus; PCP=Pneumocystis pneumonia; TB=tuberculosis; IV=intravenous; IV=intravenous; IM=intramuscularly; CSF=cerebrospinal fluid;CNS=central nervous system; TMP/SMX=trimethoprim-sulfamethoxazole; HAART=highly active antiretroviral therapy; CMV=cytomegalovirus. HBV=hepatitis B virus; HBeAg=hepatitis B e antigen; HCV=hepatitis C virus; IRIS=immune reconstitution inflammatory syndrome; PCR=polymerase chain reaction; HSV=herpes simplex virus; HPV=human papillomavirus

† Information in these guidelines might not represent Food and Drug Administration (FDA) approval or approved labeling for products or indications. Specifically, the terms safe and effective might not be synonymous with the FDA-defined legal standards for product approval. Letters and roman numerals in parentheses after regimens indicate the strength of the recommendations and the quality of evidence supporting it (see Box).

CNS disease:

transparent gifgrey bulletAcute therapy (minimum 2-wk induction followed by consolidation therapy)
transparent gif

— Amphotericin B, 0.7-1.0 mg/kg body weight (or liposomal amphotericin B, 6 mg/kg body weight) IV daily; PLUS flucytosine, 100 mg/kg body weight orally daily divided 4 times a day (AI); OR

—Liposomal amphotericin B, 4-6 mg/kg body weight IV once daily (especially in children with renal insufficiency or infusion-related toxicity to amphotericin B);
PLUS flucytosine, 100 mg/kg body weight orally daily divided 4 times a day(AII)

transparent gifgrey bulletConsolidation therapy (followed by chronic suppressive therapy):
transparent gif

— Fluconazole, 12 mg/kg body weight on day 1 and then 6-12 mg/kg body weight (max 800 mg) daily IV or orally for a minimum of 8 wks (AI)

Localized disease including isolated pulmonary disease (CNS not involved)

transparent gifgrey bullet Fluconazole, 12 mg/kg body weight on day 1 and then 6-12 mg/kg body weight (max 600 mg) IV or orally daily (AIII)
transparent gif

Treatment duration: length of initial therapy for non-CNS disease depends on site and severity of infection and clinical response.

Disseminated disease (CNS not involved) or severe pulmonary disease:

transparent gifgrey bullet Amphotericin B, 0.7-1.0 mg/kg body weight; OR amphotericin liposomal, 3-5 mg/kg body weight; OR amphotericin lipid complex, 5 mg/kg body weight IV daily (AIII)
transparent gif

Treatment duration: length of initial therapy for non-CNS disease depends on site and severity of infection and clinical response.

CNS disease:

transparent gifgrey bullet Acute therapy (minimum 2-wk induction followed by consolidation therapy)
transparent gif

— Liposomal amphotericin B, 4-6 mg/kg body weight IV once daily (especially in children with renal insufficiency or infusion-related toxicity to amphotericin B) (AII)

— Amphotericin B, 0.7-1.5 mg/kg body weight IV once daily (if flucytosine not tolerated) (BI)

— Fluconazole, 12 mg/kg body weight on day 1 and then 6-12 mg/kg body weight (max 800 mg) IV or orally daily; PLUS flucytosine, 100 mg/kg body weight orally daily divided 4 times a day (BII) (offered only if amphotericin B-based therapy not tolerated)

Consolidation therapy (followed by chronic suppressive therapy):

transparent gifgrey bullet Itraconazole, 5-10 mg/kg per day once or twice daily (max 200 mg/dose) for a minimum of 8 wks (BI). A loading dose (calculated twice daily dose is administered 3 times daily) for the first 3 days (max 200 mg/dose; 600 mg/day). See comment on itraconazole under "Other options/ Issues."
transparent gif

Localized disease including isolated pulmonary disease (CNS not involved)

transparent gifgrey bulletAmphotericin B, 0.7-1.0 mg/kg body weight; OR amphotericin liposomal, 3-5 mg/kg body weight; OR amphotericin lipid complex, 5 mg/kg body weight IV daily (AIII)
transparent gif

Disseminated disease (CNS not involved) or severe pulmonary disease:

transparent gifgrey bulletFluconazole, 12 mg/kg body weight on day 1 and then 6-12 mg/kg body weight (max 600 mg) IV or orally once daily AIII)
transparent gif

In patients with meningitis, CSF culture should be negative before initiation of consolidation therapy.

Overall in vitro resistance to antifungal agents used to treat cryptococcosis remains uncommon. Newer azoles (voriconazole, posaconazole, ravuconazole) are all very active in vitro against C. neoformans, but published clinical experience is limited about their use for cryptococcosis.

Liquid preparation of itraconazole (if tolerated) preferable (but more expensive) over tablet formulation because of better bioavailability (BIII).

Serum concentrations of itraconazole should be monitored to optimize drug dosing.

Amphotericin B may increase toxicity of flucytosine by increasing cellular uptake or impairing its renal excretion or both.

Flucytosine dose should be adjusted to keep drug levels at 4060 µg/mL.

Oral acetazolamide should not be used to reduce intracranial pressure in cryptococcal meningitis (DIII).

Chronic suppressive therapy (secondary prophylaxis) with fluconazole is recommended for adults and childrens after initial therapy (Table 2).

References

1. Dankner WM, Lindsey JC, Levin MJ, et al. Correlates of opportunistic infections in children infected with the human immunodeficiency virus managed before highly active antiretroviral therapy. Pediatr Infect Dis J 2001;20:40-8.
3. Gona P, Van Dyke RB, Williams PL, et al. Incidence of opportunistic and other infections in HIV-infected children in the HAART era. JAMA 2006;296:292-300.
4. Nesheim SR, Kapogiannis BG, Soe MM, et al. Trends in opportunistic infections in the pre- and post-highly active antiretroviral therapy eras among HIV-infected children in the Perinatal AIDS Collaborative Transmission Study, 1986-2004. Pediatrics 2007;120:00 100–9.
339. Leggiadro RJ, Kline MW, Hughes WT. Extrapulmonary cryptococcosis in children with acquired immunodeficiency syndrome. Pediatr Infect Dis J 1991;10:658-62.
340. Gonzalez CE, Shetty D, Lewis LL, et al. Cryptococcosis in human immunodeficiency virus-infected children. Pediatr Infect Dis J 1996;15:796-800.
341. Abadi J, Nachman S KA, Pirofski L. Cryptococcosis in children with AIDS. Clin Infect Dis 1999;28:309-13.
342. Mirza S, Phelan M, Rimland D, et al. The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992-2000. Clin Infect Dis 2003;36:789-94.
344. Gumbo T, Kadzirange G, Mielke J, et al. Cryptococcus neoformans meningoencephalitis in African children with acquired immunodeficiency syndrome. Pediatr Infect Dis J 2002;21:54-6.
345. Chuck SL, Sande MA. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med 1989;321: 794-9.
346. Currie BP, Freundlich LF, Soto MA, et al. False-negative cerebrospinal fluid cryptococcal latex agglutination tests for patients with culture-positive cryptococcal meningitis. J Clin Microbiol 1993;31:2519-22.
347. Pfaller MA, Messer SA, Boyken L, et al. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol 2005;43:2163-7.
348. Goldman DL, Khine H, Abadi J, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 2001;107:E66.
349. Chang LW, Phipps WT, Kennedy GE, et al. Antifungal interventions for the primary prevention of cryptococcal disease in adults with HIV. Cochrane Database Syst Rev 2005;Jul 20:CD004773.
350. Shelburne SA, Darcourt J, White AC, et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 2005;40:1049-52.
351. Shelburne SA, Visnegarwala F, Darcourt J, et al. Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS 2005;194.
352. Perfect JR, Marr KA, Walsh TJ, et al. Voriconazole treatment for lesscommon, emerging, or refractory fungal infections. Clin Infect Dis 2003;36:1122-31. Vol. 58 / RR-11 Recommendations and Reports 109
353. Pitisuttithum P, Negroni R, Graybill JR, et al. Activity of posaconazole in the treatment of central nervous system fungal infections. J Antimicrob Chemother 2005;56:745-55.
354. Bennett JE, Dismukes WE, Duma RJ, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med 1979;301:126-31.
355. van der Horst CM, Saag MS, Cloud GA, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med 1997;337:15-21.
356. Saag MS, Graybill RJ, Larsen RA, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 2000;30:710-8.
357. Brouwer AE, Rajanuwong A, Chierakul W, et al. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet 2004;363:1764-7.
358. Dromer F, Mathoulin-Pélissier S, Launay O, et al. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLOS Med 2007;4:e21.
359. Leenders AC, Reiss P, Portegies P, et al. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 1997;11:1463-71.
360. Larsen RA, Bozzette SA, Jones BE, et al. Fluconazole combined with flucytosine for treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis 1994;19:741-5.
361. Mayanja-Kizza H, Oishi K, Mitarai S, et al. Combination therapy with fluconazole and flucytosine for cryptococcal meningitis in Ugandan patients with AIDS. Clin Infect Dis 1998;26:1362-6.
362. Saag MS, Powderly WG, Cloud GA, et al. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N Engl J Med 1992;326:83-9.
363. Bicanic T, Harrison T, Niepieklo A, et al. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 2006;43:1069-73.
364. Bicanic T, Meintjes G, Wood R, et al. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clin Infect Dis 2007;45:76-80.
365. Saag MS, Cloud GA, Graybill JR, et al. A comparison of itraconazole versus fluconazole as maintenance therapy for AIDS-associated cryptococcal meningitis. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Clin Infect Dis 1999;28:291-6.
366. Graybill JR, Sobel J, Saag M, et al. Diagnosis and management of increased intracranial pressure in patients with AIDS and cryptococcal meningitis. The NIAID Mycoses Study Group and AIDS Cooperative Treatment Groups. Clin Infect Dis 2000;30:47-54.
367. Newton PN, Thai le H, Tip NQ, et al. A randomized, double-blind, placebo-controlled trial of acetazolamide for the treatment of elevated intracranial pressure in cryptococcal meningitis. Clin Infect Dis 2002;35:769-72.
368. Powderly WG, Cloud GA, Dismukes WE, et al. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: value in the management of AIDS-associated cryptococcal meningitis. Clin Infect Dis 1994;18:789-92.
369. Aberg JA, Watson J, Segal M, et al. Clinical utility of monitoring serum cryptococcal antigen (sCRAG) titers in patients with AIDS-related cryptococcal disease. HIV Clin Trials 2000;1:1-6.
370. Lortholary O, Fontanet A, Mémain N, et al. Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIVassociated cryptococcosis in France. AIDS 2005;19:1043-9.
371. Skiest DJ, Hester LJ, Hardy RD. Cryptococcal immune reconstitution inflammatory syndrome: report of four cases in three patients and review of the literature. J Infect 2005;51:e289-97.
372. Lesho E. Evidence base for using corticosteroids to treat HIV-associated immune reconstitution syndrome. Expert Rev Anti Infect Ther 2006;4: 469-78.
373. Lortholary O. Management of cryptococcal meningitis in AIDS: the need for specific studies in developing countries. Clin Infect Dis 2007;45:81-3.
374. Bozzette SA, Larsen RA, Chiu J, et al. A placebo-controlled trial of maintenance therapy with fluconazole after treatment of cryptococcal meningitis in the acquired immunodeficiency syndrome. California Collaborative Treatment Group. N Engl J Med 1991;324:580-4.
375. Powderly WG, Saag MS, Cloud GA, et al. A controlled trial of fluconazole or amphotericin B to prevent relapse of cryptococcal meningitis in patients with the acquired immunodeficiency syndrome. The NIAID AIDS Clinical Trials Group and Mycoses Study Group. N Engl J Med 1992;326:793-8.
376. Kirk O, Reiss P, Uberti-Foppa C, et al. Safe interruption of maintenance therapy against previous infection with four common HIV-associated opportunistic pathogens during potent antiretroviral therapy. Ann Intern Med 2002;137:239-50.
377. Vibhagool A, Sungkanuparph S, Mootsikapun P, et al. Discontinuation of secondary prophylaxis for cryptococcal meningitis in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy: a prospective, multicenter, randomized study. Clin Infect Dis 2003;36:1329-31.
378. Mussini C, Pezzotti P, Miro JM, et al. Discontinuation of maintenance therapy for cryptococcal meningitis in patients with AIDS treated with highly active antiretroviral therapy: an international observational study. Clin Infect Dis 2004;38:565-71.
transparent gif